Microcluster-Based Incremental Ensemble Learning for Noisy, Nonstationary Data Streams
نویسندگان
چکیده
منابع مشابه
Robust ensemble learning for mining noisy data streams
a Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China b Centre for Quantum Computation & Intelligent Systems, University of Technology Sydney, Broadway, NSW 2007, Australia c Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing, China d College of Information Science & Technology, Univ. of Nebraska at Omaha, Omaha, NE 68...
متن کاملAn Ensemble Approach for Incremental Learning in Nonstationary Environments
We describe an ensemble of classifiers based algorithm for incremental learning in nonstationary environments. In this formulation, we assume that the learner is presented with a series of training datasets, each of which is drawn from a different snapshot of a distribution that is drifting at an unknown rate. Furthermore, we assume that the algorithm must learn the new environment in an increm...
متن کاملIncremental Bayes learning with prior evolution for tracking nonstationary noise statistics from noisy speech data
In this paper, a new approach to sequential estimation of the timevarying prior parameters of nonstationary noise is presented using the log-spectral or cepstral data of the corrupted noisy speech. Incremental Bayes learning is developed to provide a basis for noise prior evolution, recursively updating the noise prior statistics (mean and variance) using the approximate Gaussian posterior comp...
متن کاملOnline Ensemble Learning for Imbalanced Data Streams
While both cost-sensitive learning and online learning have been studied extensively, the effort in simultaneously dealing with these two issues is limited. Aiming at this challenge task, a novel learning framework is proposed in this paper. The key idea is based on the fusion of online ensemble algorithms and the state of the art batch mode cost-sensitive bagging/boosting algorithms. Within th...
متن کاملIncremental Learning Algorithm for Dynamic Data Streams
The recent advances in hardware and software have enabled the capture of different measurements of data in a wide range of fields. These measurements are generated continuously and in a very high fluctuating data rates. Examples include sensor networks, web logs, and computer network traffic. The storage, querying and mining of such data sets are highly computationally challenging tasks. Mining...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complexity
سال: 2020
ISSN: 1076-2787,1099-0526
DOI: 10.1155/2020/6147378