Microcluster-Based Incremental Ensemble Learning for Noisy, Nonstationary Data Streams

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust ensemble learning for mining noisy data streams

a Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China b Centre for Quantum Computation & Intelligent Systems, University of Technology Sydney, Broadway, NSW 2007, Australia c Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing, China d College of Information Science & Technology, Univ. of Nebraska at Omaha, Omaha, NE 68...

متن کامل

An Ensemble Approach for Incremental Learning in Nonstationary Environments

We describe an ensemble of classifiers based algorithm for incremental learning in nonstationary environments. In this formulation, we assume that the learner is presented with a series of training datasets, each of which is drawn from a different snapshot of a distribution that is drifting at an unknown rate. Furthermore, we assume that the algorithm must learn the new environment in an increm...

متن کامل

Incremental Bayes learning with prior evolution for tracking nonstationary noise statistics from noisy speech data

In this paper, a new approach to sequential estimation of the timevarying prior parameters of nonstationary noise is presented using the log-spectral or cepstral data of the corrupted noisy speech. Incremental Bayes learning is developed to provide a basis for noise prior evolution, recursively updating the noise prior statistics (mean and variance) using the approximate Gaussian posterior comp...

متن کامل

Online Ensemble Learning for Imbalanced Data Streams

While both cost-sensitive learning and online learning have been studied extensively, the effort in simultaneously dealing with these two issues is limited. Aiming at this challenge task, a novel learning framework is proposed in this paper. The key idea is based on the fusion of online ensemble algorithms and the state of the art batch mode cost-sensitive bagging/boosting algorithms. Within th...

متن کامل

Incremental Learning Algorithm for Dynamic Data Streams

The recent advances in hardware and software have enabled the capture of different measurements of data in a wide range of fields. These measurements are generated continuously and in a very high fluctuating data rates. Examples include sensor networks, web logs, and computer network traffic. The storage, querying and mining of such data sets are highly computationally challenging tasks. Mining...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complexity

سال: 2020

ISSN: 1076-2787,1099-0526

DOI: 10.1155/2020/6147378